Biomedical Signal Processing
نویسندگان
چکیده
Biomedical signals are observations of physiological activities of organisms, ranging from gene and protein sequences, to neural and cardiac rhythms, to tissue and organ images. Biomedical signal processing aims at extracting significant information from biomedical signals. With the aid of biomedical signal processing, biologists can discover new biology and physicians can monitor distinct illnesses. Decades ago, the primary focus of biomedical signal processing was on filtering signals to remove noise [1]–[6]. Sources of noise arise from imprecision of instruments to interference of power lines. Other sources are due to the biological systems themselves under study. Organisms are complex systems whose subsystems interact, so the measured signals of a biological subsystem usually contain the signals of other subsystems. Removing unwanted signal components can then underlie subsequent biomedicine discoveries. A fundamental method for noise cancelation analyzes the signal spectra and suppresses undesired frequency components. Another analysis framework derives from statistical signal processing. This framework treats the data as random signals; the processing, e.g. Wiener filtering [6] or Kalman filtering [7], [8], utilizes statistical characterizations of the signals to extract desired signal components. While these denoising techniques are well established, the field of biomedical signal processing continues to expand thanks to the development of various novel biomedical instruments. The advancement of medical imaging modalities such as ultrasound, magnetic resonance imaging (MRI), and positron emission tomography (PET), enables radiologists to visualize the structure and function of human organs; for example, segmentation of organ structures quantifies organ dimensions [9]. Cellular imaging such as fluorescence tagging and cellular MRI assists biologists
منابع مشابه
P81: Detection of Epileptic Seizures Using EEG Signal Processing
Epilepsy is the most common brain diseases that cause many problems in the daily life of the patient. In most attempts to automatic detection, the attack used an EEG. In this paper, The complete data set consists of five sets recorded from normal and epileptic patients. Each set containing 100 single-channel EEG segments. Here we used first and last sets (A and E). Set A consisted of segments r...
متن کاملDetecting and Predicting Muscle Fatigue during Typing By SEMG Signal Processing and Artificial Neural Networks
Introduction: Repetitive strain injuries are one of the most prevalent problems in occupational diseases. Repetition, vibration and bad postures of the extremities are physical risk factors related to work that can cause chronic musculoskeletal disorders. Repetitive work on a computer with low level contraction requires the posture to be maintained for a long time, which can cause muscle fatigu...
متن کاملAn Android Application for Estimating Muscle Onset Latency using Surface EMG Signal
Background: Electromyography (EMG) signal processing and Muscle Onset Latency (MOL) are widely used in rehabilitation sciences and nerve conduction studies. The majority of existing software packages provided for estimating MOL via analyzing EMG signal are computerized, desktop based and not portable; therefore, experiments and signal analyzes using them should be completed locally. Moreover, a...
متن کاملRemoving ECG Artifact from the Surface EMG Signal Using Adaptive Subtraction Technique
Background: The electrocardiogram artifact is a major contamination in the electromyogram signals when electromyogram signal is recorded from upper trunk muscles and because of that the contaminated electromyogram is not useful.Objective: Removing electrocardiogram contamination from electromyogram signals.Methods: In this paper, the clean electromyogram signal, electrocardiogram artifact and e...
متن کاملA Novel Method for Automated Estimation of Effective Parameters of Complex Auditory Brainstem Response: Adaptive Processing based on Correntropy Concept
Objectives: Automated Auditory Brainstem Responses (ABR) peak detection is a novel technique to facilitate the measurement of neural synchrony along the auditory pathway through the brainstem. Analyzing the location of the peaks in these signals and the time interval between them may be utilized either for analyzing the hearing process or detecting peripheral and central lesions in the human he...
متن کاملAutomatic Detection and Localization of Surface Cracks in Continuously Cast Hot Steel Slabs Using Digital Image Analysis Techniques
Quality inspection is an indispensable part of modern industrial manufacturing. Steel as a major industry requires constant surveillance and supervision through its various stages of production. Continuous casting is a critical step in the steel manufacturing process in which molten steel is solidified into a semi-finished product called slab. Once the slab is released from the casting unit, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008